плюри-производная - ορισμός. Τι είναι το плюри-производная
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι плюри-производная - ορισμός

Производная (обобщение); Односторонняя производная; Производная (обобщения); Производные высших порядков; Правосторонняя производная; Левосторонняя производная
  • Касательное отображение <math>d\varphi \colon \, TM \to TN</math>

Производная Лагранжа         
Производная Лагранжа, также известная как субстанциональная производная или материальная производная, — это производная, взятая в зависимости от системы координат, движущейся со скоростью u и часто используемая в гидроаэромеханике и классической механике. Она определена как от скалярной функции \phi(\vec{r},t) координат и времени, так и от векторной \vec{v}(\vec{r},t):
Слабая производная         
«Слабая производная» (в математике) — обобщение понятия производной функции («сильная производная») для функций, интегрируемых по Лебегу (то есть из пространства L_1), но не являющихся дифференцируемыми.
Полная производная         

производная по t от функции у = F (t, x1,..., xn), зависящей от t и x1,..., xn. П. п. выражается формулой

.

Βικιπαίδεια

Производная (математика)

Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.

Общее между различными вариациями и обобщениями заключается в том, что производная отображения характеризует степень изменения образа отображения при (бесконечно) малом изменении аргумента. В зависимости от рассматриваемых математических структур конкретизируется содержание данного понятия.

Только для случая топологических линейных пространств известно около 20 обобщений понятия производной.

Τι είναι Производная Лагранжа - ορισμός